ANSWER KEY OF
 F.E. Semester - II (RC 2019-20) Examination, July/Aug 2022
 PHYSICS
 Part-A
 Answer any two questions:

1. a) Soft and hard ferromagnetic materials

Soft magnetic materials - small hysteresis loop
Hard magnetic materials - large hysteresis loop
Any two properties of soft magnetic materials
Any two properties of hard magnetic materials
Any two applications of soft magnetic materials
Any two applications of hard magnetic materials $\boldsymbol{\sim}$..2marks
2. b) Interference in parallel thin film due to transmitted light

Ray diagram \qquad 1mark
Equation for path difference between rays T_{1} and T_{2} :
$\Delta=\mu(B C+C D)-B G$ \qquad 1mark
Simplifying and obtaining the expression:
$\Delta=2 \mu \mathrm{tcos} \mathrm{r}$ \qquad .2marks
Writing final conditions for maxima and minima:
$\left.\begin{array}{ll}2 \mu \mathrm{t} \operatorname{cosr}=\mathrm{n} \lambda & \text { (maxima) } \\ 2 \mu \mathrm{t} \cos =(2 n+1) & \lambda / 2 \quad \text { (minima) }\end{array}\right] \cdots 1$ mark
c) Hall Effect and expression for Hall Voltage

Hall Effect definition 1mark
Diagram \qquad . 1 mark
Explanation about magnetic and electric forces in opposite direction and obtaining $\mathrm{V}_{\mathrm{H}}=\mathrm{dv}_{\mathrm{d}} \mathrm{B}$

1 1 2marks

Replacing v_{d} using expressions for current density and obtaining the final expression $V_{H}=\frac{\mathrm{IB}}{\text { pew }}11 / 2$ marks

d) Numerical Problem

$$
\begin{aligned}
f_{n} & =\frac{1}{2 t} \sqrt{\frac{Y}{\rho}} \quad \ldots . .1 \text { mark } \\
& =\frac{1}{2 \times 0.15 \times 10^{-2}} \sqrt{\frac{7.9 \times 10^{10}}{2650}} \ldots2 \text { marks } \\
& =1.82 \times 10^{6} \mathrm{~Hz} \quad \ldots \ldots . .2 \text { marks }
\end{aligned}
$$

2. a) Magnetostriction oscillator

Circuit diagram of magnetostriction oscillator \qquad 2 marks
Explanation of working of circuit and generation of USW 3 marks
b) Diamagnetic \& paramagnetic materials

Five points of difference between diamagnetic \& paramagnetic materials \qquad 1 mark each
c) Diameter of bright rings in Newton's Rings for reflected light

Obtaining general expression for diameter of Newton's rings using theorem of intersecting chords. $\quad D_{\mathrm{n}}^{2}=8 \mathrm{Rt}$....2marks
Using the theory of interference in thin films for reflected light, condition for maximas is: $2 \mu t \cos r=(2 n+1) \lambda / 2$
Using normal incidence assumption we get $2 \mu t=(2 n+1) \lambda / 2$

$$
\Rightarrow t=\frac{(2 n+1) \lambda}{4 \mu}
$$

.....1mark
.....2marks
Substituting in general expression and solving we get,

$$
\begin{aligned}
D_{n} & =\sqrt{\frac{2 \lambda R}{\mu}} \cdot \sqrt{(2 n+1)} \\
& =C \cdot \sqrt{(2 n+1)} \quad \text { where } C=\sqrt{\frac{2 \lambda R}{\mu}} \text { is a constant }
\end{aligned}
$$

Thus, $D_{n} \propto \sqrt{(2 n+1)} \quad$ (square root of odd natural numbers) $]$
d) Numerical problem

Magnetic susceptibility, $\chi=\frac{M}{H}$.......1mark

$$
=\frac{3300}{220}=15
$$

.......2marks
Relative permeability, $\mu_{\mathrm{r}}=1+\chi=1+15=16$ \qquad 2marks

3. a) Interference in Wedge shaped film

Ray diagram .1mark
Applying the theory of thin film interference for reflected light, using conditions for minima \& maxima:
$2 \mu \mathrm{tcos} \mathrm{r}=\mathrm{n} \lambda$
..... 1mark
$\left.2 \mu \mathrm{tcos} r=(2 n+1) \frac{\lambda}{2} \quad\right\}$
Using normal incidence assumption and then putting $\mathrm{n}=0,1,2,3 \ldots$. and obtaining different values of ' t ' \qquad 1 mark

From the figure, obtaining expression for fringe width:
$\beta=\frac{\lambda}{2 \mu \theta} \quad$.... 2 marks
b) Cathode ray oscilloscope (CRO)

Block diagram of CRO4marks
Application to measure d.c. voltage \qquad 1mark
c) Acoustic Diffraction Grating

Diagram of experimental setup \qquad 1 mark

Explanation of setup 1 marks
Applying the theory of diffraction we have for maxima,
$d \sin \theta=n \lambda$ \qquad 1 mark

In the acoustic grating, the grating element,
$d=\lambda_{u} / 2$
...... 1 mark

Combining the equations and obtaining
$\lambda_{u}=\frac{2 n \lambda}{\sin \theta}$
$v=f . \lambda_{u}$
d) Numerical problem

$$
\begin{aligned}
\mu_{h}=\sigma . R_{H} & =\frac{R_{H}}{\rho} \quad \ldots1 \text { mark } \\
& =\frac{3.66 \times 10^{-4}}{8.93 \times 10^{-3}} \ldots1 \text { mark } \\
& =0.041 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s} \quad1 \mathrm{mark}
\end{aligned}
$$

$$
R_{H}=\frac{1}{p e}
$$

.......1mark

$$
\Rightarrow p=\frac{1}{R_{H} e}=\frac{1}{3.66 \times 10^{-4} \times 1.6 \times 10^{-19}}=1.71 \times 10^{22} / \mathrm{m}^{3}
$$

Part - B

Answer any two questions:
4. a) Ruby Laser

Diagram of Ruby laser setup1marks
Explanation of setup 1½marks
Energy level diagram of Ruby laser .1marks
Explanation of working . 11⁄2mark s
b) Moseley's Law

Statement of Moseley's Law \qquad 1 mark
Equation of Moseley Law ...1mark
Significance of Moseley's Law: Correction of periodic table \& determination of atomic number of new elements \qquad . 3 marks
c) Optical fibre communication system

Block diagram of one-way communication system using optical fibre link $\mathbf{2}$ mark Explanation of the block diagram 3 marks
d) Numerical problem

Kinetic Energy of electron accelerated through a p.d. of 182 volts is:

$$
\mathrm{E}=\mathrm{eV} \quad \text {...... } 1 \text { mark }
$$

$$
=1.6 \times 10^{-19} \times 182=2.912 \times 10^{-17} \text { Joules } \ldots \ldots . .1 \text { mark }
$$

de Broglie's wavelength,

$$
\begin{aligned}
\lambda & =\frac{h}{\sqrt{2 m E}} \ldots1 \text { mark } \\
& =\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 2.912 \times 10^{-17}}} \\
& =9.1 \times 10^{-11} \mathrm{~m} \quad \ldots . . .1 \text { mark }
\end{aligned}
$$

5. a) Expression for Compton Shift

Brief explanation of Comton effect \qquad 1 mark
Diagram showing collision between photon and electron1mark
Equation of law of conservation of energy,
$h v+m_{0} c^{2}=h v^{\prime}+m c^{2} \quad$....1mark
Equation of law of conservation of momentum along horizontal direction,
$\frac{h v}{c}+0=\frac{h v^{\prime}}{c} \cos \theta+m v \cos \varphi \ldots .{ }^{1 / 2}$ mark
Equation of law of conservation of momentum along vertical direction,
$0+0=\frac{h v^{\prime}}{c} \sin \theta-m v \sin \varphi \quad \ldots .1 / 2$ mark
Working on above equations and finally obtaining expression for Compton Shitf:
$\lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \theta) \quad . . .1$ mark
b) Structure of Optical fibre cable

Diagram

\qquad 2 marks
Explanation of different regions and their purpose
\qquad

c) Properties of x-rays

Any five properties of x-rays1mark each

d) Numerical Problem
$\left.\begin{array}{rl}E_{2} & -E_{1}=h \nu=\frac{h c}{\lambda} \\ & =\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{6200 \times 10^{-10}} \\ & =3.21 \times 10^{-19} \text { Joules }\end{array}\right\} \ldots . .2$ marks
Taking natural logarithm on both sides:
$\ln \left(\frac{N_{2}}{N_{1}}\right)=\frac{-\left(E_{2}-E_{1}\right)}{K T}$
$\Rightarrow T=\frac{-\left(E_{2}-E_{1}\right)}{K \times \ln \left(\frac{N_{2}}{N_{1}}\right)}$

$$
=\frac{-3.21 \times 10^{-19}}{1.38 \times 10^{-23} \times \ln \left(2.359 \times 10^{-34}\right)}
$$

$$
=300.4^{\circ} \mathrm{K}
$$

6. a) Expression for Acceptance Angle and Numerical Aperture

Ray diagram \qquad 1 mark
Limiting condition: when $i=i_{\text {max }}, \theta=i_{c}$ \qquad 1 mark
Using Snell's Law and critical angle formula and finally obtaining the expression:
$\mathrm{i}_{\text {max }}=\sin ^{-1}\left(\frac{\sqrt{\left(\mu_{1}^{2}-\mu_{2}^{2}\right)}}{\mu_{0}}\right)$...... 1 marks

$N . A .=\sin i_{\max }=\left(\frac{\sqrt{\left(\mu_{1}^{2}-\mu_{2}^{2}\right)}}{\mu_{0}}\right)$
$N . A .=\mu_{1} \sqrt{2 \Delta}$ \qquad 1 mark
b) Continuous X -ray spectra

Diagram 1 mark
Explanation of origin of Continuous X-ray spectra 4 marks
c) Properties \& Applications of Laser

Any three properties of Laser1mark each
Any two applications of Laser1mark each

d) Numerical problem

Given R.I. of core, $\mu_{1}=1.55$, R.I. of cladding, $\mu_{2}=1.50$,
Assume surrounding medium as air, $\mu_{0}=1$
Numerical Aperture, N. A. $=\left(\frac{\sqrt{\left(\mu_{1}^{2}-\mu_{2}^{2}\right)}}{\mu_{0}}\right)$.... 1 mark

$$
=\left(\frac{\sqrt{\left(1.55^{2}-1.50^{2}\right)}}{1}\right)=0.39 \quad \ldots11 / 2 \text { marks }
$$

Critical Angle, $\mathrm{i}_{\mathrm{c}}=\sin ^{-1}\left(\frac{\mu_{2}}{\mu_{1}}\right) \quad$..... 1 mark

$$
=\sin ^{-1}\left(\frac{1.50}{1.55}\right)=75.4^{\circ} \quad \ldots1 \frac{1}{2} \text { marks }
$$

Part - C

Answer any one question:

7. a) Step Index (SI) and Graded Index (GRIN) fibres
R.I. profile of Step Index (SI) fibre 1 mark
R.I. profile of Graded Index (GRIN) fibre 1 mark

Explanation of Step Index fibre \qquad 1½marks
Explanation of Graded Index fibre 1 1 2marks
b) Davisson-Germer Experiment

Diagram of experimental setup 1mark
Brief explanation of setup $11 / 2 m$ mark
Oservations, analysis and inference from experiment showing that electrons behave like waves \qquad 2½ marks
c) Expression for conductivity of a semiconductor

Diagram \qquad 1mark
Using definition of current $(1=\mathrm{Q} / \mathrm{t})$ obtaining expression for J :
$J=n e v_{d}$ \qquad 11/2marks
Using Ohm's law obtaining another expression for J:
$J=\sigma E$ 11⁄2marks
Combining the above two and obtaining final expression $\sigma=n e \mu \quad$...... 1mark

d) Numerical Problem

In a parallel thin film, due to reflected light, condition for minima (dark) is:
$2 \mu \mathrm{tcos} \mathrm{r}=\mathrm{n} \lambda$
......1mark
$\Rightarrow \mathrm{t}=\frac{\mathrm{n} \lambda}{2 \mu \cos r}$

1mark
For smallest thickness, $\mathrm{n}=1$

$$
\begin{gathered}
\mathrm{t}_{\min }=\frac{\lambda}{2 \mu \cos r}=\frac{5870 \times 10^{-8}}{2 \times 1.5 \times \cos 60} \ldots1 \text { mark } \\
=3.91 \times 10^{-5} \mathrm{~cm} \ldots . . .2 \text { marks }
\end{gathered}
$$

8. a) Properties of Ultrasonic waves

Definition of ultrasonics 3mark
Any three properties of ultrasonic waves 1mark each
b) Bragg's Law of X-ray diffraction

Brief explanation of X-ray diffraction 1 mark
Diagram 1 1 mark

Path difference between the rays ABC \& DEF is:
$\Delta=G E+E H$ \qquad 1 mark
Obtaining expression for Δ and then using condition for constructive interference and finally obtaining:
$2 d \sin \theta=m \lambda \quad2$ mark
c) $\mathrm{He}-\mathrm{Ne}$ Laser

Diagram of He-Ne laser setup1/2marks
Explanation of setup \qquad 1mark
Energy level diagram of He-Ne laser \qquad .11⁄2marks
Explanation of working \qquad 2marks
d) Numerical Problem

In Newton's rings, for dark rings due to reflected light, we have,
$D_{n}^{2}=4 n \lambda R / \mu$ \qquad 1mark
Assuming air film, $\mu=1$
Thus, $D_{n}^{2}=4 n \lambda R$
1mark
For $10^{\text {th }}$ dark ring we get,
$D_{10}^{2}=4 \times 10 \times \lambda R$
$\Rightarrow R=\frac{D_{10}^{2}}{4 \times 10 \times \lambda}=\frac{0.5^{2}}{4 \times 10 \times 5000 \times 10^{-8}}=125 \mathrm{~cm}$ 1mark
For $50^{\text {th }}$ dark ring we have,
$D_{50}^{2}=4 \times 50 \times \lambda R$ 2marks

$$
=4 \times 50 \times 5000 \times 10^{-8} \times 125=1.25
$$

$\Rightarrow D_{50}=\sqrt{1.25}=1.12 \mathrm{~cm}$
\Rightarrow radius of $50^{\text {th }}$ dark ring $=D_{50} / 2=0.56 \mathrm{~cm}$
\square

