ANSWER KEY OF # F.E. Semester – I (RC 2019-20) Examination, Jan/Feb 2023 **PHYSICS** #### Part - A Answer any two questions: ### 1. a) Band theory of solids Diagram showing band structure of conductors, insulators & semiconductors 2 marks Explanation of each with two examples3marks ### b) Types of magnetic materials Diamagnetic, paramagnetic & ferromagnetic materials Brief explanation of each type1mark each Three examples of each2marks # c) Diameter of bright rings in Newton's Rings for reflected light Obtaining general expression for diameter of Newton's rings using theorem of intersecting $D_n^2 = 8 R t$2marks Using the theory of interference in thin films for reflected light, condition for maximas is: $2 \mu t \cos r = (2n+1)\lambda/2$ Using normal incidence assumption we get $2 \mu t = (2n+1)\lambda/2$1mark $t = \frac{(2n+1)\lambda}{2}$ Substituting in general expression and solving we get, $$D_n = \sqrt{\frac{2\lambda R}{\mu}} \cdot \sqrt{(2n+1)}$$ $$= C \cdot \sqrt{(2n+1)} \quad \text{where } C = \sqrt{\frac{2\lambda R}{\mu}} \quad \text{is a constant}$$ Thus $D = C \cdot \sqrt{(2n+1)} \quad \text{(square root of odd natural numbers)}$ Thus, $D_n \propto \sqrt{(2n+1)}$ (square root of odd natural numbers) # d) Numerical Problem Magnetostriction definition 1mark $$f_n = \frac{1}{2L} \sqrt{\frac{Y}{\rho}}$$ 1 mark $$= \frac{1}{2 \times 8.2 \times 10^{-2}} \sqrt{\frac{11.6 \times 10^{10}}{7.6 \times 10^3}}$$ 1 mark $$= 23.822 \ Hz$$ 1 mark It can be used to generate USW since $f_n > 20,000$ Hz 1 mark # 2. a) Interference in parallel thin film due to reflected light Ray Diagram 1 mark The optical path difference between the rays R1 and R2 is: $$\Delta$$ = (AB + BC) in film – AG in air = μ (AB + BC) – (AG + λ /2)1mark Solving and obtaining: $$\Delta = 2 \mu t \cos r - \frac{\lambda}{2}$$2marks Conditions for maxima & minima: Conditions for maxima & minima: $$2 \mu t \cos r = (2n+1)\frac{\lambda}{2}$$ $$2 \mu t \cos r = n \lambda$$ -- Page 1 of 5--2marks ### b) Piezoelectric oscillator Circuit diagram of piezoelectric oscillator2 marks Explanation of working of circuit and generation of USW3 marks # c) Hall Effect and expression Hall Voltage Hall Effect definition 1mark Diagram1 mark Explanation about magnetic and electric forces in opposite direction and obtaining $V_H=dv_dB$ 2 marks Replacing v_d using expressions for current density and obtaining the final expression $V_H=\frac{IB}{pew}$ 1mark # d) Numerical problem Magnetic susceptibility, $$\chi=\frac{M}{H}$$1mark $$=\frac{4100}{300}=13.67$$2marks Relative permeability, $\mu_{r} = 1 + \chi = 1 + 13.67 = 14.67$2marks ### 3. a) Hysteresis Loop Diagram of hysteresis loop1 mark Explanation of hysteresis loop2marks Definition of retentivity and coercivity1 mark each # b) Determination of refractive index using Newton's rings Ray diagram1mark Equations in air 1 mark Equations in liquid 1mark Solving & obtaining final formula, $\mu=\frac{D_{n+p}^2-D_n^2}{D_{n+p}^{\prime}^2-D_n^{\prime}^2}$2marks ### c) Applications of US waves - (i) Echo sounding to determine depth of ocean floor (brief explanation).....2½ marks - (ii) Cavitation in cleaning applications (brief explanation)2½ marks ### d) Numerical problem For intrinsic semiconductor, $$\begin{split} \sigma_i &= \ e \ n_i (\mu_e + \mu_h) \ \text{.....1mark} \\ &= 1.6 \text{x} 10^{\text{-}19} \ \text{x} \ 2.4 \ \text{x} \ 10^9 \ \text{x} \ (0.34 + 0.11) \ \text{....1mark} \\ &= 1.73 \ \text{x} \ 10^{\text{-}10} \ \text{ohm}^{\text{-}1} \text{m}^{\text{-}1} \ \ \text{......1mark} \end{split}$$ Current density, $J = \sigma_i E = 1.73 \times 10^{-10} \times 1200 = 2.07 \times 10^{-7} \text{ A / m}^2$2marks #### Part – B Answer **any two** questions: # 4. a) Bragg's Law of X-ray diffraction Brief explanation about x-ray diffraction1 mark Diagram1 mark Path difference between the rays ABC & DEF is: $$\Delta = GE + EH$$1 mark Obtaining expression for Δ and then using condition for constructive interference and finally obtaining: ### b) Expression for Acceptance Angle and Numerical Aperture Ray diagram 1 mark Limiting condition: when $i=i_{max}$, $\theta=i_c$ 1 mark Using Snell's Law and critical angle formula and finally obtaining the expression: $$egin{aligned} &{\bf i}_{\max} = \sin^{-1}\!\left(\! rac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\! ight)$$ 1 mark $N.A. = \sin i_{\max} = \!\left(\! rac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\! ight)$ 1 mark Brief explanation about acceptance cone 1 mark # c) Properties and industrial applications of Laser Any three properties of laser1 mark each Any two industrial applications of laser1 mark each ### d) Numerical problem i) For cricket ball $$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1 \times 19} = 3.49 \times 10^{-35} \text{m} \dots 2 \text{ marks}$$ ii) For electror $$E = 50 \text{keV} = 50 \times 10^{3} \times 1.6 \times 10^{-19} = 8 \times 10^{-15} \text{Joules 1 mark}$$ $$\lambda = \frac{h}{\sqrt{2mE}} = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 8 \times 10^{-15}}} = 5.49 \times 10^{-12} \text{m} \quad \text{..... 2 marks}$$ # 5. a) Step Index (SI) and Graded Index (GRIN) fibres R.I. profile of Step Index (SI) fibre1 mark R.I. profile of Graded Index (GRIN) fibre1 mark Explanation of Step Index fibre 1½marks Explanation of Graded Index fibre 1½marks #### b) Moseley's Law Statement of Moseley's Law 11/2 marks Equation of Moseley Law 11/2 marks Significance of Moseley's Law: Correction of periodic table & determination of atomic number of new elements2 marks #### c) Davisson-Germer Experiment (experiment to demonstrate wave nature of electrons) Diagram of experimental setup 1mark Brief explanation of setup 1½mark Oservations, analysis and inference from experiment showing that electrons behave like waves2½ marks #### d) Numerical Problem Definition of population inversion 1mark $$E_{2} - E_{1} = hv = \frac{hc}{\lambda}$$ $$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{6337 \times 10^{-10}}$$ $$= 3.14 \times 10^{-19} \text{ Joules}$$ $$= 1 \text{ marks}$$ $$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/KT}$$ 1 marks = $e^{-(3.14 \times 10^{-19})/(1.38 \times 10^{-23} \times 323)}$ 1mark = 2.55×10^{-31} 1mark ### 6. a) Characteristic X-ray spectra Diagram showing collision of electron and target atom 1 mark Diagram showing spectral lines (Lynman & Balmer series) 1 mark Explanation of origin of Characteristic X-ray spectra3 marks # b) Structure of Optical fibre cable1 mark Diagram Explanation of different regions and their purpose3marks Propagation of light in an optical fibre using multiple TIR..... 1 mark ## c) Three-level pumping scheme Energy level diagram (before/after) 1 mark Explanation of process of pumping and obtaining population inversion3marks aluminum foil binding tape insulated steel wire polythene jacket Drawbacks: requires high pumping power 1 mark ### d) Numerical problem Given R.I. of core, μ_1 = 1.5, R.I. of cladding, μ_2 = 1.48, Assume surrounding medium as air, $\mu_0 = 1$ Critical Angle, $$i_c = \sin^{-1}\left(\frac{\mu_2}{\mu_1}\right) = \sin^{-1}\left(\frac{1.48}{1.5}\right) = 80.6^{\circ}$$2 mark Acceptance angle, $$i_{max} = sin^{-1} \left(\frac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0} \right) = sin^{-1} \left(\frac{\sqrt{(1.5^2 - 1.48^2)}}{1} \right) = 14.13^{\circ}$$...2mark Numerical Aperture, N. A. = $\sin i_{max} = \sin 14.13 = 0.2441$1mark #### Part - C #### Answer any one question: #### 7. a) Detection of Ultrasonic waves Brief explanation of any three methods of detection of USW: Piezoelectric method, Kundt's tube method, Sensitive flame method, Thermal detector method5 marks ## b) Cathode ray oscilloscope (CRO) Block diagram of CRO3marks Brief explanation about using CRO to measure frequency of ac signal2mark #### c) <u>He-Ne Laser</u> Diagram of He-Ne laser setup½marks Explanation of setup 1mark Energy level diagram of He-Ne laser1½marks Brief explanation of working 2marks # d) Numerical Problem In a parallel thin film, due to reflected light, condition for minima (dark) is: $$2 \mu t \cos r = n\lambda$$1mark $$\Rightarrow t = \frac{n \lambda}{2\mu \cos r}$$ 1mark -- Page 4 of 5-- For smallest thickness, n = 1 $$t_{min} = \frac{\lambda}{2 \mu \cos r} = \frac{5890 \times 10^{-10}}{2 \times 1.38 \times \cos 45} \dots 2 \text{marks}$$ $$= 3.02 \times 10^{-7} \text{ m } \dots 1 \text{ mark}$$ ### 8. a) Interference in Wedge shaped film Ray diagram1mark Applying the theory of thin film interference for reflected light, using conditions for minima & maxima: $$2 \mu t \cos r = n \lambda$$ $$2 \mu t \cos r = (2n+1)\frac{\lambda}{2}$$ 1mark Using normal incidence assumption and then putting n = 0,1,2,3.... and obtaining different values of 't' 1mark From the figure, obtaining expression for fringe width: $$\beta = \frac{\lambda}{2 \mu \theta}$$2marks # b) Expression for Compton Shift Brief explanation of Comton effect 2 marks Diagram showing collision between photon and electron1mark Equation of law of conservation of energy, $$hv + m_0c^2 = hv' + mc^2$$1mark Equation of law of conservation of momentum along horizontal direction, $$\frac{hv}{c} + 0 = \frac{hv'}{c}cos\theta + mvcos\varphi$$1mark Equation of law of conservation of momentum along vertical direction, $$0 + 0 = \frac{hv'}{c}sin\theta - mvsin\varphi$$1mark Working on above equations and finally obtaining expression for Compton Shitf: $$\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$4mark ### c) Numerical Problem $$\begin{split} &\frac{1}{\lambda_{K_{\alpha}}} = \frac{3}{4} R(z-1)^2 \text{1mark} \\ &(z-1)^2 = \frac{4}{3 \, \lambda_{K_{\alpha}} R} = \frac{4}{3 \, \times 1.65 \times 10^{-10} \times 1.097 \times 10^7} = 737 \\ &z-1 = \sqrt{737} = 27 \\ &z=27+1=28 \end{split}$$ The target element is Nickel (atomic number 28)1mark