ANSWER KEY OF

F.E. Semester – I (RC 2019-20) Examination, Jan/Feb 2023 **PHYSICS**

Part - A

Answer any two questions:

1. a) Band theory of solids

Diagram showing band structure of conductors, insulators & semiconductors 2 marks Explanation of each with two examples3marks

b) Types of magnetic materials

Diamagnetic, paramagnetic & ferromagnetic materials Brief explanation of each type1mark each Three examples of each2marks

c) Diameter of bright rings in Newton's Rings for reflected light

Obtaining general expression for diameter of Newton's rings using theorem of intersecting $D_n^2 = 8 R t$ 2marks

Using the theory of interference in thin films for reflected light, condition for maximas is: $2 \mu t \cos r = (2n+1)\lambda/2$ Using normal incidence assumption we get $2 \mu t = (2n+1)\lambda/2$ 1mark $t = \frac{(2n+1)\lambda}{2}$

Substituting in general expression and solving we get,

$$D_n = \sqrt{\frac{2\lambda R}{\mu}} \cdot \sqrt{(2n+1)}$$

$$= C \cdot \sqrt{(2n+1)} \quad \text{where } C = \sqrt{\frac{2\lambda R}{\mu}} \quad \text{is a constant}$$
Thus $D = C \cdot \sqrt{(2n+1)} \quad \text{(square root of odd natural numbers)}$

Thus, $D_n \propto \sqrt{(2n+1)}$ (square root of odd natural numbers)

d) Numerical Problem

Magnetostriction definition 1mark

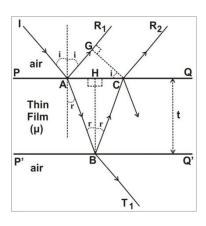
$$f_n = \frac{1}{2L} \sqrt{\frac{Y}{\rho}}$$
 1 mark
$$= \frac{1}{2 \times 8.2 \times 10^{-2}} \sqrt{\frac{11.6 \times 10^{10}}{7.6 \times 10^3}}$$
 1 mark
$$= 23.822 \ Hz$$
 1 mark

It can be used to generate USW since $f_n > 20,000$ Hz 1 mark

2. a) Interference in parallel thin film due to reflected light

Ray Diagram 1 mark

The optical path difference between the rays R1 and R2 is:


$$\Delta$$
 = (AB + BC) in film – AG in air
= μ (AB + BC) – (AG + λ /2)1mark

Solving and obtaining:

$$\Delta = 2 \mu t \cos r - \frac{\lambda}{2}$$
2marks

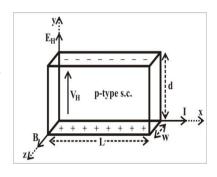
Conditions for maxima & minima:

Conditions for maxima & minima:
$$2 \mu t \cos r = (2n+1)\frac{\lambda}{2}$$

$$2 \mu t \cos r = n \lambda$$
 -- Page 1 of 5--

.....2marks

b) Piezoelectric oscillator


Circuit diagram of piezoelectric oscillator2 marks
Explanation of working of circuit and generation of USW3 marks

c) Hall Effect and expression Hall Voltage

Hall Effect definition 1mark

Diagram1 mark

Explanation about magnetic and electric forces in opposite direction and obtaining $V_H=dv_dB$ 2 marks Replacing v_d using expressions for current density and obtaining the final expression $V_H=\frac{IB}{pew}$ 1mark

d) Numerical problem

Magnetic susceptibility,
$$\chi=\frac{M}{H}$$
1mark
$$=\frac{4100}{300}=13.67$$
2marks

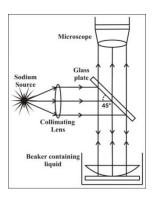
Relative permeability, $\mu_{r} = 1 + \chi = 1 + 13.67 = 14.67$ 2marks

3. a) Hysteresis Loop

Diagram of hysteresis loop1 mark

Explanation of hysteresis loop2marks

Definition of retentivity and coercivity1 mark each


b) Determination of refractive index using Newton's rings

Ray diagram1mark

Equations in air 1 mark

Equations in liquid 1mark

Solving & obtaining final formula, $\mu=\frac{D_{n+p}^2-D_n^2}{D_{n+p}^{\prime}^2-D_n^{\prime}^2}$2marks

c) Applications of US waves

- (i) Echo sounding to determine depth of ocean floor (brief explanation).....2½ marks
- (ii) Cavitation in cleaning applications (brief explanation)2½ marks

d) Numerical problem

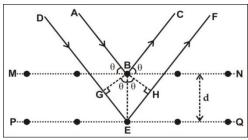
For intrinsic semiconductor,

$$\begin{split} \sigma_i &= \ e \ n_i (\mu_e + \mu_h) \ \text{.....1mark} \\ &= 1.6 \text{x} 10^{\text{-}19} \ \text{x} \ 2.4 \ \text{x} \ 10^9 \ \text{x} \ (0.34 + 0.11) \ \text{....1mark} \\ &= 1.73 \ \text{x} \ 10^{\text{-}10} \ \text{ohm}^{\text{-}1} \text{m}^{\text{-}1} \ \ \text{......1mark} \end{split}$$

Current density, $J = \sigma_i E = 1.73 \times 10^{-10} \times 1200 = 2.07 \times 10^{-7} \text{ A / m}^2$ 2marks

Part – B

Answer **any two** questions:

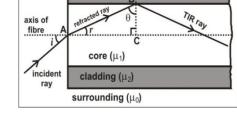

4. a) Bragg's Law of X-ray diffraction

Brief explanation about x-ray diffraction1 mark
Diagram1 mark

Path difference between the rays ABC & DEF is:

$$\Delta = GE + EH$$
1 mark

Obtaining expression for Δ and then using condition for constructive interference and finally obtaining:



b) Expression for Acceptance Angle and Numerical Aperture

Ray diagram 1 mark

Limiting condition: when $i=i_{max}$, $\theta=i_c$ 1 mark Using Snell's Law and critical angle formula and finally obtaining the expression:

$$egin{aligned} &{\bf i}_{\max} = \sin^{-1}\!\left(\!rac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\!
ight)$$
 1 mark $N.A. = \sin i_{\max} = \!\left(\!rac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\!
ight)$ 1 mark

Brief explanation about acceptance cone 1 mark

c) Properties and industrial applications of Laser

Any three properties of laser1 mark each

Any two industrial applications of laser1 mark each

d) Numerical problem

i) For cricket ball

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1 \times 19} = 3.49 \times 10^{-35} \text{m} \dots 2 \text{ marks}$$

ii) For electror

$$E = 50 \text{keV} = 50 \times 10^{3} \times 1.6 \times 10^{-19} = 8 \times 10^{-15} \text{Joules 1 mark}$$

$$\lambda = \frac{h}{\sqrt{2mE}} = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 8 \times 10^{-15}}} = 5.49 \times 10^{-12} \text{m} \quad \text{..... 2 marks}$$

5. a) Step Index (SI) and Graded Index (GRIN) fibres

R.I. profile of Step Index (SI) fibre1 mark

R.I. profile of Graded Index (GRIN) fibre1 mark

Explanation of Step Index fibre 1½marks

Explanation of Graded Index fibre 1½marks

b) Moseley's Law

Statement of Moseley's Law 11/2 marks

Equation of Moseley Law 11/2 marks

Significance of Moseley's Law: Correction of periodic table & determination of atomic number of new elements2 marks

c) Davisson-Germer Experiment (experiment to demonstrate wave nature of electrons)

Diagram of experimental setup 1mark

Brief explanation of setup 1½mark

Oservations, analysis and inference from experiment showing that electrons behave like waves2½ marks

d) Numerical Problem

Definition of population inversion 1mark

$$E_{2} - E_{1} = hv = \frac{hc}{\lambda}$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{6337 \times 10^{-10}}$$

$$= 3.14 \times 10^{-19} \text{ Joules}$$

$$= 1 \text{ marks}$$

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/KT}$$
 1 marks
= $e^{-(3.14 \times 10^{-19})/(1.38 \times 10^{-23} \times 323)}$ 1mark
= 2.55×10^{-31} 1mark

6. a) Characteristic X-ray spectra

Diagram showing collision of electron and target atom 1 mark Diagram showing spectral lines (Lynman & Balmer series) 1 mark

Explanation of origin of Characteristic X-ray spectra3 marks

b) Structure of Optical fibre cable

.....1 mark Diagram

Explanation of different regions and their

purpose3marks

Propagation of light in an optical fibre using multiple

TIR..... 1 mark

c) Three-level pumping scheme

Energy level diagram (before/after) 1 mark

Explanation of process of pumping and obtaining population inversion3marks

aluminum foil binding tape

insulated steel wire

polythene jacket

Drawbacks: requires high pumping power 1 mark

d) Numerical problem

Given R.I. of core, μ_1 = 1.5, R.I. of cladding, μ_2 = 1.48,

Assume surrounding medium as air, $\mu_0 = 1$

Critical Angle,
$$i_c = \sin^{-1}\left(\frac{\mu_2}{\mu_1}\right) = \sin^{-1}\left(\frac{1.48}{1.5}\right) = 80.6^{\circ}$$
2 mark

Acceptance angle,
$$i_{max} = sin^{-1} \left(\frac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0} \right) = sin^{-1} \left(\frac{\sqrt{(1.5^2 - 1.48^2)}}{1} \right) = 14.13^{\circ}$$
 ...2mark

Numerical Aperture, N. A. = $\sin i_{max} = \sin 14.13 = 0.2441$ 1mark

Part - C

Answer any one question:

7. a) Detection of Ultrasonic waves

Brief explanation of any three methods of detection of USW: Piezoelectric method, Kundt's tube method, Sensitive flame method, Thermal detector method5 marks

b) Cathode ray oscilloscope (CRO)

Block diagram of CRO3marks

Brief explanation about using CRO to measure frequency of ac signal2mark

c) <u>He-Ne Laser</u>

Diagram of He-Ne laser setup½marks

Explanation of setup 1mark

Energy level diagram of He-Ne laser1½marks

Brief explanation of working 2marks

d) Numerical Problem

In a parallel thin film, due to reflected light, condition for minima (dark) is:

$$2 \mu t \cos r = n\lambda$$
1mark

$$\Rightarrow t = \frac{n \lambda}{2\mu \cos r}$$
1mark
-- Page 4 of 5--

For smallest thickness, n = 1

$$t_{min} = \frac{\lambda}{2 \mu \cos r} = \frac{5890 \times 10^{-10}}{2 \times 1.38 \times \cos 45} \dots 2 \text{marks}$$
$$= 3.02 \times 10^{-7} \text{ m } \dots 1 \text{ mark}$$

8. a) Interference in Wedge shaped film

Ray diagram1mark

Applying the theory of thin film interference for reflected light, using conditions for minima & maxima:

$$2 \mu t \cos r = n \lambda$$

$$2 \mu t \cos r = (2n+1)\frac{\lambda}{2}$$
 1mark

Using normal incidence assumption and then putting n

= 0,1,2,3.... and obtaining different values of 't' 1mark

From the figure, obtaining expression for fringe width:

$$\beta = \frac{\lambda}{2 \mu \theta}$$
2marks

b) Expression for Compton Shift

Brief explanation of Comton effect 2 marks

Diagram showing collision between photon and electron1mark

Equation of law of conservation of energy,

$$hv + m_0c^2 = hv' + mc^2$$
1mark

Equation of law of conservation of momentum along horizontal direction,

$$\frac{hv}{c} + 0 = \frac{hv'}{c}cos\theta + mvcos\varphi$$
1mark

Equation of law of conservation of momentum along vertical direction,

$$0 + 0 = \frac{hv'}{c}sin\theta - mvsin\varphi$$
1mark

Working on above equations and finally obtaining expression for Compton Shitf:

$$\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$
4mark

c) Numerical Problem

$$\begin{split} &\frac{1}{\lambda_{K_{\alpha}}} = \frac{3}{4} R(z-1)^2 \text{1mark} \\ &(z-1)^2 = \frac{4}{3 \, \lambda_{K_{\alpha}} R} = \frac{4}{3 \, \times 1.65 \times 10^{-10} \times 1.097 \times 10^7} = 737 \\ &z-1 = \sqrt{737} = 27 \\ &z=27+1=28 \end{split}$$

The target element is Nickel (atomic number 28)1mark

