ANSWER KEY OF F.E. Semester – I (RC 2019-20) Examination, Jan/Feb 2022 PHYSICS

Part – A

Answer any two questions:

1. a) Hall Effect and expression Hall Voltage

Hall Effect explanation (for n-type or p-type) 2mark Diagram1 mark Explanation about magnetic and electric forces in opposite direction and obtaining $V_H = dv_d B$ 1 marks Replacing v_d using expressions for current density and obtaining the final expression $V_H = \frac{IB}{pew}$ 1mark

b) Properties of paramagnetic substances

- Five properties1 mark each
- c) Numerical Problem

$$R = \frac{D_{n+p}^2 - D_n^2}{4 p \lambda} \dots \text{1mark}$$
$$= \frac{0.6^2 - 0.3^2}{4 \times 15 \times 6000 \times 10^{-8}} \dots 1 \text{ mark}$$

= 75 cm **1 mark**

$$D_{5}^{2} = 4 \times 5 \times \lambda R / \mu$$

= 4 × 5 × 6000 × 10⁻⁸ × 75/1.33
= 0.068
$$D_{5} = \sqrt{0.068} = 0.26 \text{ cm}$$
 2 marks

d) Acoustic Diffraction Grating

Diagram of setup 1 mark

Explanation of setup 2 marks Analysis using equation of diffraction and obtaining expression for wavelength and velocity of USW. 2 marks

2. a) Band theory of solids

Explanation of Energy Gap 1 mark

Diagram showing band structure of conductors, insulators & semiconductors 1 marks Explanation of each with two example3marks

b) Numerical problem

To find mobility:

$$\mu_{h} = \sigma. R_{H} = \frac{1}{\rho} \cdot R_{H} \quad \text{...... 1 mark}$$

$$= \frac{1}{8.93 \times 10^{-3}} \cdot 3.66 \times 10^{-4} \quad \text{...... 1 mark}$$

$$= 0.041 \text{ m}^{2}/\text{V.s} \quad \text{...... 1 mark}$$
To find density of charge carriers:
$$R_{H} = \frac{1}{pe}$$

 $\therefore p = \frac{1}{R_H e} = \frac{1}{3.66 \times 10^{-4} \times 1.6 \times 10^{-19}} = 1.7 \times 10^{22} \text{ /m}^3 \dots 2 \text{ marks}$

c) <u>Cathode ray oscilloscope (CRO)</u> Block diagram of CRO**3marks**

Vertical & horizontal signals2marks

d) Interference in parallel thin film due to transmitted light

Ray diagram **1mark** Equation for path difference between rays T_1 and T_2 : $\Delta = \mu$ (BC + CD) – BG **1mark** Simplifying and obtaining the expression: $\Delta = 2\mu t \cos^{100}r$ **2marks** Writing final conditions for maxima and minima: $2 \mu t \cos r = n \lambda$ (maxima)**1mark** $2 \mu t \cos r = (2n+1) \lambda/2$ (minima)

3. a) Applications of USW

- i) Detection of flaws in metals (with diagram)21/2 marks
- ii) SONAR (with diagram)21/2 marks
- b) Numerical Problem

$$\begin{split} \lambda_u &= \frac{2n\lambda}{\sin\theta} \quad \dots \dots \mathbf{1} \text{ mark} \\ &= \frac{2 \times 2 \times 5893 \times 10^{-10}}{\sin 4^\circ 30'} = 3.004 \times 10^{-5} m \quad \dots \dots \mathbf{2} \text{ marks} \\ \nu &= f \cdot \lambda_u = 100 \times 10^6 \times 3.004 \times 10^{-5} = 3004 \text{ m/s} \quad \dots \dots \mathbf{2} \text{ marks} \end{split}$$

Obtaining general expression for diameter of Newton's rings using theorem of intersecting chords. $D_n^2 = 8 \text{ R t}$ 2marks

Using the theory of interference in thin films for reflected light, condition for <u>mimimas</u> is: $2 \mu t \cos r = n \lambda$ Using, normal incidence assumption we get $2 \mu t = n\lambda$ $\Rightarrow t = \frac{n\lambda}{2\mu}$

Substituting in general expression and solving we get,

$$D_n = 2\sqrt{\frac{\lambda R}{\mu}} \cdot \sqrt{n}$$
$$= C \cdot \sqrt{n} \quad \text{where } C = 2\sqrt{\frac{\lambda R}{\mu}} \text{ is a constant}$$

.2marks

Thus, $D_n \propto \sqrt{n}$

d) <u>Diamagnetism</u>

Explanation about diamagnetism and its origin **.....2marks** Properties of diamagnetic substances (any three) **.....3marks**

Part – B Answer any two questions:

Diagram of setup**1 mark** Diagram of energy level **diagram****1 mark** Explanation of construction**1 mark** Explanation of working**2 marks**

b) Numerical problem

Acceptance angle,
$$i_{max} = \sin^{-1}\left(\frac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\right) = \sin^{-1}\left(\frac{\sqrt{(1.44^2 - 1.41^2)}}{1}\right) = 17^\circ$$
 ...2marks

Numerical Aperture, N. A. = $\sin i_{max} = \sin 17^\circ = 0.2924$ 1mark

Fractional Refractive Index Change, $\Delta = \frac{\mu_1 - \mu_2}{\mu_1} = \frac{1.44 - 1.41}{1.44} = 0.0208$ 2marks

c) Davisson-Germer Experiment

Diagram of experimental setup 1mark

Brief explanation of setup 11/2 mark

Oservations, analysis and inference from experiment showing that electrons behave like waves2½ marks

d) Bragg's Law of X-ray diffraction

Brief explanation about x-ray diffraction**1 mark** Bragg's law ray diagram**1 mark** Path difference between the rays ABC & DEF is: $\Delta = GE + EH$ **1 mark** Obtaining expression for Δ and then using condition for constructive interference and finally obtaining: $2dsin\theta = m\lambda$ **2marks**

5. a) Stimulated emission

Energy level diagram 1 mark

Explanation of process of stimulated emission..... 2mark

Light amplification using stimulated emission (with diagram) 2marks

b) Numerical Problem

i) For ball

 $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{10 \times 10^{-3} \times 10} = 6.63 \times 10^{-33} \text{m} \dots 2\% \text{ marks}$ ii) For electron $\lambda = \frac{h}{\sqrt{2mE}} = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 100 \times 1.6 \times 10^{-19}}} = 1.22 \times 10^{-10} \text{m} \dots 2\% \text{ marks}$

c) Compton effect & Compton Effect experiment

Diagram of setup of Compton Effect experiment 1mark

Explanation of experiment and observations...... 3marks

Explanation for un-modified component (collision of photon & nucleus of scatterer)1mark

d) Moseley's Law

Statement of Moseley's Law 1 mark

Equation of Moseley Law2marks

Significance of Moseley's Law: Correction of periodic table & determination of atomic number of new elements2 marks

6. a) Numerical Problem

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/KT} \quad 1 \text{mark}$$

$$E_2 - E_1 = h\nu = \frac{hc}{\lambda}$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6328 \times 10^{-10}} \quad 2 \text{marks}$$

$$= 3.14 \times 10^{-19}$$

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/KT}$$

$$= e^{-(3.14 \times 10^{-19})/(1.38 \times 10^{-23} \times 330)} \quad 1 \text{mark}$$

$$= 1.13 \times 10^{-30} \quad 1 \text{mark}$$

b) Numerical Aperture and fractional refractive index difference

 $N.A. = \sin i_{max}$ 1mark

Using the expression for $i_{\mbox{max}}$ we get,

N. A. =
$$\left(\frac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\right)$$
 2mark

Fractional Refractive Index Difference,

$$\Delta = \frac{\mu_1 - \mu_2}{\mu_1} \quad1 \text{mark}$$

Expression for Numerical Aperture in terms of Fractional Refractive Index Difference

 $N.A. = \mu_1 \sqrt{2\Delta}$ 1mark

c) Characteristic X-ray spectra

Diagram showing incoming electron and target atom **....1 mark** Explanation of production of Characteristic X-ray spectra **.....4 marks**

d) Types of optical fibres

Step-index fibre & GRIN fibre RI profile diagrams1 mark Cross-sectional view diagrams1 marks Brief explanation of each type of fibre3 marks

Part – C

Answer any one question:

1 mark

7. a) Interference in Wedge shaped film

Ray diagram1mark

 $2 \mu t \cos r = n \lambda$

Applying the theory of thin film interference for reflected light, using conditions for minima & maxima:

 $2 \mu t \cos r = (2n + 1)\frac{\lambda}{2}$ Using normal incidence assumption and then putting n = 0,1,2,3.... and obtaining different values of 't' **..... 1mark** From the figure, obtaining expression for fringe width:

 $\beta = \frac{\lambda}{2 \mu \theta}$ 2marks

b) Magnetostriction mrthod of producing USW

Brief explanation about magnetostriction **.....1mark** Circuit diagram of magnetostriction oscillator **.....1mark** Explanation of working of circuit and generation of USW **......3 marks**

c) Numerical problem

Intrinsic concentration (of electrons & holes) = $2.5 \times 10^{19} / \text{m}^3$

Since donor impurities are added to pure Ge, concentration of holes will remain same as intrinsic concentration, whereas concentration of electrons will increase to: intrinsic concentration + concentration of donors.

Hence, conc. of holes, $p = 2.5 \times 10^{19} / \text{m}^3$, and

Conc. of electrons, $n = 2.5 \times 10^{19} + (4.2 \times 10^{28} / 10^6) = 4.2025 \times 10^{22} / \text{m}^3$

Conductivity, $\sigma = n e \mu_e + p e \mu_h$

$$= e(n \ \mu_e + p \ \mu_h)$$

= 1.6 x 10⁻¹⁹ x (4.2025 x 10²² x 0.36 + 2.5 x 10¹⁹ x 0.18)
= 2421.36 \Omega⁻¹m⁻¹

Resistivity, $\rho = 1/\sigma = 4.13 \times 10^{-4} \Omega$ -m

d) Hard and Soft magnetic materials

Five differences 1 mark each

8. a) Four-level pumping scheme

Energy level diagram (before/after) **..... 1 mark** Explanation of process of pumping and obtaining population inversion **.....3marks** Advantages: requires less pumping power **..... 1 mark**

b) Optical fibre communication system

Block diagram of one-way communication system using optical fibre link1 mark Explanation of the block diagram3 marks Two advantages of using optical fibres over copper wires for communication½ mark each

c) Continuous X-ray spectra

Explanation of origin of Continuous X-ray spectra with diagram **....3 marks** Equating loss of K.E. of electron to photon energy and then obtaining expression for cut-off wavelength, $\lambda_{min} = \frac{hc}{eV}$ **..... 2 marks**

d) Numerical Problem

We have, KE, $E = \frac{1}{2}mv^2 = eV$ **1 mark**

Also we have from de Broglie's wavelength formula,

 $\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2meV}}$ (Substituting for *E* from above equation) **1 mark** Squaring both sides and rearranging we get,

Squaring both sides and rearranging we get, $V = \frac{h^2}{2me\lambda^2} = \frac{(6.63 \times 10^{-34})^2}{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times (0.4 \times 10^{-10})^2} = 943.44 \text{ volts 2 marks}$

Kinetic Energy of this electron will be, $E = eV = 1.6 \times 10^{-19} \times 943.44$ = 1.51×10^{-16} J 1 mark