

F.E. Semester – I/II (RC 2016-17) Examination, Nov./Dec. 2018 APPLIED SCIENCE – I (Physics)

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any two questions from Part – A and Part – B each and any one question from Part – C.

2) Assume additional data, if required.

3) Draw diagrams wherever required.

Physical Constants:

1. Planck's constant = 6.626×10^{-34} J-s 2. Electron charge = 1.6×10^{-19} C 3. Boltzmann's constant = 1.38×10^{-23} J/K 4. Electron mass = 9.1×10^{-31} kg 5. Rydberg constant = 1.097×10^{7} /m 6. Velocity of light = 3×10^{8} m/s

PART - A

Answer any two questions:

1.		Show that the diameters of dark circular Newton's rings for reflected light are proportional to the square root of natural numbers.	5
	b)	Describe acoustic diffraction method to find velocity of ultrasonic waves in liquid.	5
	c) d)	Write a short note on Magnetostatic focusing. A piezoelectric crystal of thickness 2.8 mm produces USW of frequency 410	5
		KHz. Calculate the thickness of this crystal to produce ultrasonic waves of frequency 550 KHz.	5
2.	a)	Draw block diagram of CRO and explain its various sections. Derive an expression for conductivity of a semiconductor in terms of carrier	5
		concentration and carrier mobility.	5
		What are soft and hard ferromagnetic materials? Write their properties and applications.	5
	d)	In a Newton's Rings experiment, the diameter of the 15 th ring was found to be 0.59 cm and that of the 5 th ring was 0.336 cm. If the radius of the Planobe 0.59 cm and that of the 5 th ring was 0.336 cm.	
		convex lens is 100 cm, calculate the wavelength of light used. What happens to ring diameter if air film is replaced with liquid to refractive index 1.5?	5

the use of fibre optics in scientific field.

c) What is Compton effect? Derive an expression for Compton Shift.

second would be emitted by a 1 m W He-Ne laser?

d) A typical He-Ne laser emits radiation of $\lambda = 6328 \, \text{A}^{\circ}$. How many photons per

5

5

5

PART - C

Answer any one question:

	7.	a)	Derive an expression for fringe width of interference fringes formed in a wedge shaped thin film.	5
			Briefly explain three characteristics properties and two scientific applications of laser. Describe an expression to demonstrate the wave nature of electron.	5
		c)	Describe an expression to demonstrate the wave nature of electron.	5
		d)	A magnetic material with susceptibility of -0.28×10^{-5} is subjected to magnetic field of strength 1100 A/m. Calculate magnetization of the material. Also evaluate the magnetic flux density of the field inside the material.	5
	8.	a)	Describe how x-rays are produced in Coolidge tube. Explain how intensity	
1		/	and quality of x-rays are controlled in it.	5
		b)	Explain hysteresis loop. What is coercivity and retentivity.	5
			Give an account of physical origin of Hall effect. Explain the application of Hall effect in determining mobility of charge carriers.	5
		d)	The ratio of population of two energy levels out of which upper one corresponds to a metastable state is 1.059×10^{-30} . Determine the	
			wavelength of light emitted at 330 K.	5