

## SEM 1-2 (RC 2016-17)

## F.E. (Semester – I) (RC 2016-17) Examination, Nov./Dec. 2016 APPLIED SCIENCE (Physics) (New)

|                   | I I I I I I I I I I I I I I I I I I I |                       |                 | SAMPLEY CONTANT STREET |    |
|-------------------|---------------------------------------|-----------------------|-----------------|------------------------|----|
| Duration: 3 Hours |                                       | madmetic a            | saso (ii) diter | Max. Marks: 10         | 00 |
|                   |                                       |                       |                 | IVIAX. IVIAINS . II    | UU |
|                   |                                       | and the second second |                 |                        |    |

Instructions: 1) Answer any two questions from Part – A and Part – B each and any one question from Part – C.

2) Assume additional data if required.

3) Draw diagrams wherever required.
Physical constants:
Planck's constant = 6.626 × 10<sup>-34</sup> J-s
Electron charge = 1.6 × 10<sup>-19</sup> C
Boltzmann's constant = 1.38 × 10<sup>-23</sup> J/K
Electron mass = 9.1 × 10<sup>-31</sup> kg
Rydberg constant = 1.097 × 10<sup>7</sup>/m
Velocity of light = 3 × 10<sup>8</sup> m/s.

## PART-A

## Answer any two questions.

| 1. | a) | Briefly discuss the physical origin of Hall effect. Derive an expression for Hall voltage interms of current through the semiconductor.                                                                                                                                     | 5 |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | b) | Explain hysteresis in soft and hard magnetic materials and give an account of their specific applications.                                                                                                                                                                  | 5 |
|    | c) | Obtain an expression for fringe width in a wedge shape film interms of angle of wedge and wavelength of light used.                                                                                                                                                         | 5 |
|    | d) | The wavelength of light transmitted through a liquid is 5800 A°. The first order angle of diffraction is 0.046°. Calculate velocity of ultrasonic waves in liquid if the frequency of ultrasonic waves produced by transducer is 2 MHz.                                     | 5 |
| 2. | a) | With the help of an experimental set up, explain the Newton's ring method to determine refractive index of a liquid.                                                                                                                                                        | 5 |
|    | b) | Describe acoustic diffraction method to find velocity of ultrasonic waves in liquid.                                                                                                                                                                                        | 5 |
|    | c) | Explain construction and working of magnetic lens.                                                                                                                                                                                                                          | 5 |
|    |    | Calculate the resistance of a block of silicon at 300 K and of length 0.5 cm and cross section $3 \times 10^{-7}$ m <sup>2</sup> , doped with $4 \times 10^{22}$ phosphorus atoms/m <sup>3</sup> . What current flows when 1 V is applied along its length? Given diffusion |   |
|    |    | constant of electron is 0.0036 m <sup>2</sup> /s.                                                                                                                                                                                                                           | 5 |
|    |    |                                                                                                                                                                                                                                                                             |   |



| 3.      | a)  | Draw block diagram of CRO and briefly explain its application to determine amplitude of dc voltage.                                                                                                                                                                                                                                                                                                                    | 5 |
|---------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|         | b)  | Write down atleast three features in each of the following materials (i) diamagnetic (ii) paramagnetic and (iii) ferromagnetic material.                                                                                                                                                                                                                                                                               | 5 |
|         | c)  | Newton's ring set up is used with a source emitting two wavelengths $\lambda_1 = 6000 \text{ A}^\circ$ and $\lambda_2 = 4500 \text{A}^\circ$ . It is found that the n <sup>th</sup> dark ring due to $6000 \text{ A}^\circ$ coincides with $(n+1)^{th}$ dark ring due to $4500 \text{ A}^\circ$ . If radius of curvature of lens is 90 cm, find the diameter of n <sup>th</sup> dark ring for $6000 \text{ A}^\circ$ . | 5 |
|         | d)  | Derive the conditions of bright and dark interference fringes due to transmitted light from a parallel sided thin film.                                                                                                                                                                                                                                                                                                | 5 |
|         |     | PART – B. m. nouseled                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| Ar      | ISW | er <b>any two</b> questions.                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 4.      | a)  | Explain the origin of continuous X-ray spectrum. Obtain expression for cutoff wavelength in the spectrum.                                                                                                                                                                                                                                                                                                              | 5 |
|         | b)  | Write down the characteristic properties of laser. Identify the property of laser which will be useful in welding, surveying and fiber optics communication.                                                                                                                                                                                                                                                           | 5 |
|         | c)  | Briefly explain BCS theory of superconductivity.                                                                                                                                                                                                                                                                                                                                                                       | 5 |
|         | d)  | A glass clad fiber is made with core of refractive index 1.5 and cladding is doped to give fractional index difference 0.005. Find: (i) R.I. of cladding (ii) Critical angle (iii) NA and (iv) Acceptance angle.                                                                                                                                                                                                       | 5 |
| 5.      | a)  | Explain the terms :  i) Silsbee effect  ii) Meissner effect.                                                                                                                                                                                                                                                                                                                                                           | 5 |
| 0       | b)  | What is basic principle of fiber optics? Explain the classification of optical fibers based on mode of propagation.                                                                                                                                                                                                                                                                                                    | 5 |
|         | C   | Describe construction and working of ruby laser. Draw the necessary diagrams.                                                                                                                                                                                                                                                                                                                                          | 5 |
| er<br>e | d   | A photon of energy 1.02 MeV is scattered through 90° by a free electron. Calculate the energy of photon and electron after recoil.                                                                                                                                                                                                                                                                                     | 5 |
| 14-4    |     |                                                                                                                                                                                                                                                                                                                                                                                                                        |   |



| 6. | a)  | Describe Bragg's X-ray spectrometer to verify Bragg's law.                                                                                                                                                                              | 5 |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | b)  | Explain the term acceptance angle of optical fiber. Obtain an expression for numerical aperture of an optical fiber interms of refractive indices of core and cladding material.                                                        | 5 |
|    | c)  | What is optical resonator? What role does it play in laser?                                                                                                                                                                             | 5 |
|    |     | What voltage must be applied to an electron source to produce electron having de Broglie wavelength of 0.4 A°? What will be kinetic energy of the electron moving under this potential?                                                 | 5 |
|    |     | PART-C                                                                                                                                                                                                                                  |   |
| An | SWe | er <b>any one</b> question.                                                                                                                                                                                                             |   |
| 7. | a)  | What is meant by direct and inverse piezoelectric effect? Give an account of echo sounding in marine application.                                                                                                                       | 5 |
|    | b)  | Explain the importance of an extended source of light while observing interference in thin films.                                                                                                                                       | 5 |
|    | c)  | Calculate the critical current ( $I_c$ ) for 1 mm diameter wire of lead at 5 K from the following data.                                                                                                                                 | 5 |
|    |     | $T_c$ for lead = 7.18 K and $H_0$ for lead = $6.5 \times 10^4 \frac{A}{m}$                                                                                                                                                              |   |
|    | d)  | How does stimulated emission take place with exchange of energy between helium and neon atoms in a He-Ne laser? Mention industrial applications of laser (any two).                                                                     | 5 |
| 8. | a)  | What are coercivity and retentivity? Give any two differences between diamagnetic and ferromagnetic material.                                                                                                                           | 5 |
|    | b)  | How does drift and diffusion currents arise in a semiconductor? Briefly explain use of Hall effect in identifying the type of semiconductor.                                                                                            | 5 |
|    | C)  | A laser system emits photons of wavelengths 6925 A° and 6941 A° due to transition at ground state from the upper and lower energy states. Calculate the energy values of these energy levels in eV and also their ratio of populations. | 5 |
|    | d)  | Write down any four properties of X-rays. Also mention physical significance of Mosley's law.                                                                                                                                           | 5 |