ANSWER KEY OF F.E. Semester – I (RC 2019-20) Examination, Nov/Dec 2019 PHYSICS

Part – A

Answer any two questions:

1. a) Interference in parallel thin film due to reflected light

Ray Diagram 1 mark

The optical path difference between the rays R1 and R2 is:

 Δ = (AB + BC) in film – AG in air

 $= \mu (AB + BC) - (AG + \lambda/2)$ 1mark

Solving and obtaining:

 $\Delta = 2 \ \mu \ t \cos r - \frac{\lambda}{2}$ 2marks

Conditions for maxima & minima:

$$2 \mu t \cos r = (2n+1)\frac{\lambda}{2}$$

 $2 \mu t \cos r = n \lambda$

b) Paramagnetism

Brief explanation of paramagnetism 1 mark

Any 4 properties of paramagnetic materials4marks

c) Band theory of solids

Diagram showing band structure of Conductors, Insulators & semiconductors 2 marks Explanation of each with one example3marks

....1mark

d) Magnetostriction

Definition of magnetostriction1 mark

Numerical problem

$$f_n = \frac{1}{2L} \sqrt{\frac{Y}{\rho}} \quad \dots \text{ 1mark}$$

= $\frac{1}{2 \times 8 \times 10^{-2}} \sqrt{\frac{11.5 \times 10^{10}}{7.8 \times 10^3}} \dots \text{ 1 mark}$
= 23998 Hz \qquad \text{...... 1 mark}

Since the natural frequency is greater than 20,000Hz, the rod can be used to generate USW.....**1mark**

2. a) Piezoelectric oscillator

Circuit diagram of piezoelectric oscillator2 marks Explanation of working of circuit and generation of USW3 marks

b) <u>Hysteresis Loop</u>

Diagram of hysteresis loop1 mark

Explanation of hysteresis loop2marks

Definition of retentivity and coercivity1 mark each

c) Interference in Wedge shaped film

Ray diagram1mark

Applying the theory of thin film interference for reflected light, using conditions for minima & maxima:

 $2 \mu t \cos r = n \lambda$ $2 \mu t \cos r = (2n + 1)\frac{\lambda}{2}$ **1 mark**

Using normal incidence assumption and then putting n = 0,1,2,3.... and obtaining different values of 't' **.... 1mark** From the figure, obtaining expression for fringe width:

$$\beta = \frac{\lambda}{2 \mu \theta}$$
2marks

d) Numerical problem

For intrinsic semiconductor,

$$\begin{split} \sigma_{i} &= e \; n_{i}(\mu_{e} + \mu_{h}) \;1 \text{mark} \\ &= 1.6 \times 10^{-19} \; x \; 2.5 \; x \; 10^{9} \; x \; (0.36 + 0.17) \;1 \text{mark} \\ &= 2.12 \; x \; 10^{-10} \; \text{ohm}^{-1} \text{m}^{-1} \;1 \text{mark} \\ \text{Current density, } J &= \; \sigma_{i} E = 2.12 \; x \; 10^{-10} \; x \; 1000 = 2.12 \; x \; 10^{-7} \; \text{A / m}^{2} \; \;2 \text{marks} \end{split}$$

3. a) Hall Effect and expression Hall Voltage

Hall Effect definition 1mark

Diagram1 mark

Explanation about magnetic and electric forces in opposite direction and obtaining $V_H = dv_d B$ 2 marks Replacing v_d using expressions for current density and

obtaining the final expression $V_{\rm H} = \frac{IB}{pew}$ 1mark

b) Applications of US waves

(i) Detection of flaws in metals (brief expln.)21/2 marks

(ii) SONAR (brief expln.)2½ marks

c) Cathode ray oscilloscope (CRO)

Block diagram of CRO4marks

Purpose of time base circuit: to generate sawtooth signal1mark

d) Numerical Problem

In a parallel thin film, due to reflected light, condition for minima is:

$$2 \mu t \cos r = n \lambda \qquad \text{.....1mark}$$

$$\Rightarrow t = \frac{n \lambda}{2 \mu \cos r} \qquad \text{1mark}$$

For smallest thickness, n = 1

$$t_{min} = \frac{\lambda}{2 \mu \cos r} = \frac{6000 \times 10^{-10}}{2 \times 1.5 \times \cos 45} \qquad \text{......1mark}$$

$$= 2.82 \times 10^{-7} \text{ m} \qquad \text{.....2 marks}$$

4. a) Stimulated emission

Energy level diagram 1 mark Explanation of process of stimulated emission..... 2mark Light amplification using stimulated

emission (with diagram) **.... 2marks**

b) Bragg's Law of X-ray diffraction

Diagram**1 mark** Path difference between the rays ABC & DEF is: $\Delta = GE + EH$**1 mark** Obtaining expression for Δ and then using condition for constructive interference and finally obtaining: $2dsin\theta = m\lambda$**3 mark**

c) <u>Compton effect & Compton Effect experiment</u>

Definition of Compton Effect **1mark** Diagram of experimental setup **1mark** Explanation of setup and observations**3 marks**

d) Numerical problem

Critical Angle, $i_c = \sin^{-1}\left(\frac{\mu_2}{\mu_1}\right) = \sin^{-1}\left(\frac{1.48}{1.5}\right) = 80.6^{\circ}$ 2 mark Acceptance angle, $i_{max} = \sin^{-1}\left(\frac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0}\right) = \sin^{-1}\left(\frac{\sqrt{(1.5^2 - 1.48^2)}}{1}\right) = 14.13^{\circ}$...2mark

Numerical Aperture, N. A. = $\sin i_{max} = \sin 14.13 = 0.2441$ 1mark

5. a) Expression for Acceptance Angle & Acceptance cone

Ray diagram 1 mark

Limiting condition: when $i = i_{max}$, $\theta = i_c$ **1 mark** Using Snell's Law and critical angle formula and finally obtaining the expression:

$$i_{max} = sin^{-1} \left(\frac{\sqrt{(\mu_1^2 - \mu_2^2)}}{\mu_0} \right)$$
 3 mark

b) Characteristic and continuous X-ray spectra

Explanation of origin of Characteristic X-ray spectra with diagram2½ marks Explanation of origin of Continuous X-ray spectra with diagram2½ marks

c) de Broglie's hypothesis & matter waves

de Broglie's hypothesis: every particle has a wave associated with it.**1 mark** de Broglie's wavelength: $\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$ **1 mark**

Any 3 properties of matter waves3marks

d) Population inversion is a state in which there are more atoms in the upper lever than in the lower level 1mark

Numerical Problem

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/KT} \quad \text{1mark}$$

$$E_2 - E_1 = h\nu = \frac{hc}{\lambda}$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6328 \times 10^{-10}} \quad \text{1mark}$$

$$= 3.14 \times 10^{-19}$$

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/KT}$$

$$= e^{-(3.14 \times 10^{-19})/(1.38 \times 10^{-23} \times 330)} \quad \text{1mark}$$

$$= 1.13 \times 10^{-30} \quad \text{1mark}$$

6. a) Ruby laser

Diagram of setup 1 mark Energy level diagram1mark Brief explanation of setup and working 2marks Drawbacks (any two)1mark

b) <u>Types of optical fibres</u>

i) Single-mode Step-index fibre (ii) Multimode step-index fibre (iii) GRIN fibre RI profile diagrams1 mark
 Cross-sectional view diagrams2 marks
 Brief explanation of each type of fibre2 marks

c) Moseley's Law and its significance

Statement of Moseley's Law**1mark** Formula of Moseley's Law: $\frac{1}{\lambda} = R(z-a)^2 \left[\frac{1}{n_f^2} - \frac{1}{n_i^2}\right]$ **1matk** Significance: Correction of Mendelev's periodic table, identification of new elements, determination of atomic number**3 marks**

d) Numerical problem

Compton shift, $\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$ 1mark

$$\Rightarrow \lambda' = \lambda + \frac{\pi}{m_0 c} (1 - \cos\theta)$$

= 2 × 10⁻¹⁰ + $\frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 3 \times 10^8} (1 - \cos90)$ 1mark
= 2.0242 × 10⁻¹⁰ m2marks

Compton shift = $\lambda' - \lambda = 0.0242 \text{ x}10^{-10} \text{m}$ 1mark

Part – C

Answer any one question:

7. a) Diameter of dark rings in Newton's Rings for reflected

General expression for diameter: $D_n^2 = 8 \text{ R t}$ **1mark** Using the theory of interference in thin films for reflected light, condition for <u>mimimas</u> is: $2 \mu t \cos r = n \lambda$ **1mark**

Using, normal incidence assumption we get 2 μ $t = n\lambda$

$$\Rightarrow t = \frac{n\lambda}{2\mu}$$
1mark

Substituting in general expression and solving we get,

$$D_n = 2\sqrt{\frac{\lambda R}{\mu}} \cdot \sqrt{n}$$

= $C \cdot \sqrt{n}$ where $C = 2\sqrt{\frac{\lambda R}{\mu}}$ is a constant
Thus, $D_n \propto \sqrt{n}$ **2marks**

b) Optical Resonator

Diagram of optical resonator1mark

Brief explanation2 marks

Requirement of optical resonator in laser: feedback of photons & selection of direction. Brief explanation.2marks

c) Optical fibre communication system

Block diagram2marks Explanation of block diagram 2marks Any two advantages of optical fibres over copper wires1mark

d) Numerical Problem

$$\frac{1}{\lambda_{K_{\alpha}}} = \frac{3}{4}R(z-1)^{2} \text{1mark}$$

$$(z-1)^{2} = \frac{4}{3\lambda_{K_{\alpha}R}} = \frac{4}{3\times 1.55\times 10^{-10}\times 1.097\times 10^{7}} = 784.1$$

$$z-1 = \sqrt{784.1} = 28$$

$$z = 28 + 1 = 29$$
3 marks

The target element is Copper (atomic number 29)1mark

8. a) Expression for conductivity of a semiconductor

Diagram 1mark

Using definition of current (I =Q/t) obtaining expression for J: $J = n e v_d$ 1½marks Using Ohm's law obtaining another expression for J: $J = \sigma E$ 1½marks Combining the above two and obtaining final expression $\sigma = n e \mu$ 1mark b) Soft and hard magnetic materials

Difference between soft and hard magnetic materials based on hysteresis loop **.....1marks** Any two properties each of soft and hard magnetic materials **......2marks** Any two applications each of soft and hard magnetic materials **......2marks**

c) Compton effect explanation

Explanation for modified component (collision of photon & electron of scatterer)2½marks Explanation for modified component (collision of photon & nucleus of scatterer)2½marks

d) Numerical Problem

Wavelength of ultrasonic waves, $\lambda_u = \frac{2n\lambda}{\sin\theta} = \frac{2 \times 2 \times 6000 \times 10^{-10}}{\sin 5^{\circ} 36'} = 2.46 \times 10^{-5} m$ 3marks Velocity of USW, v = f. $\lambda_u = = 1 \times 10^6 \times 2.46 \times 10^{-5} = 24.6 \text{ m/s}$ 2marks